Minimax Rates for Homology Inference

ثبت نشده
چکیده

Lower bound Here we describe the densities on the two manifolds M1 and M2. There are two sets of interest to us: W1 = M1 \M2 which corresponds to the two “holes” of radius 4τ in the annulus, and W2 = M2\M1 which corresponds to the d-dimensional piece added to smoothly join the inner pieces of the two annuli in M2. By construction, vol(W1) = 2vd(4τ) d where vd is the volume of the unit d-ball. vol(W2) is somewhat tricky to calculate exactly due to the curvature of W2 but it is easy to see that vol(W2) is also O(τ ) with the constant depending on d.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Minimax rates for homology inference

Often, high dimensional data lie close to a low-dimensional submanifold and it is of interest to understand the geometry of these submanifolds. The homology groups of a manifold are important topological invariants that provide an algebraic summary of the manifold. These groups contain rich topological information, for instance, about the connected components, holes, tunnels and sometimes the d...

متن کامل

Tight Lower Bounds for Homology Inference

The homology groups of a manifold are important topological invariants that provide an algebraic summary of the manifold. These groups contain rich topological information, for instance, about the connected components, holes, tunnels and sometimes the dimension of the manifold. In earlier work [1], we have considered the statistical problem of estimating the homology of a manifold from noiseles...

متن کامل

Statistical inference for nonparametric GARCH models

We consider extensions of the famous GARCH(1, 1) model where the recursive equation for the volatilities is not specified by a parametric link but by a smooth autoregression function. Our goal is to estimate this function under nonparametric constraints when the volatilities are observed with multiplicative innovation errors. We construct an estimation procedure whose risk attains the usual con...

متن کامل

Minimax and Adaptive Estimation of Covariance Operator for Random Variables Observed on a Lattice Graph

Covariance structure plays an important role in high dimensional statistical inference. In a range of applications including imaging analysis and fMRI studies, random variables are observed on a lattice graph. In such a setting it is important to account for the lattice structure when estimating the covariance operator. In this paper we consider both minimax and adaptive estimation of the covar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012